A Cold-Tolerant Electrolyte for Lithium-Metal Batteries Emerges in San Diego (IMAGE)
Caption
Improvements to a class of battery electrolyte first introduced in 2017 -- liquefied gas electrolytes -- could pave the way to a high-impact and long-sought advance for rechargeable batteries: replacing the graphite anode with a lithium-metal anode. The research, published July 1, 2019 by the journal Joule, builds on innovations first reported in Science in 2017 by the same research group at the University of California San Diego and the university spinout South 8 Technologies. One of the tantalizing aspects of these liquefied gas electrolytes is that they function both at room temperature and at extremely low temperatures, down to minus 60 C. These electrolytes are made from liquefied gas solvents -- gases that are liquefied under moderate pressures -- which are far more resistant to freezing than standard liquid electrolytes. In the 2019 paper in Joule, the researchers report on how, through both experimental and computational studies, they improve their understanding on some of the shortcomings of the liquefied gas electrolyte chemistry. With this knowledge, they were able to tailor their liquefied gas electrolytes for improved performance in key metrics for lithium-metal anodes, both at room temperature and minus 60 C.
Credit
UC San Diego Jacobs School of Engineering
Usage Restrictions
For use in stories related to this research project / photo credit: UC San Diego Jacobs School of Engineering
License
Licensed content