Material phase diagram for iron-based superconductor (IMAGE)
Caption
(Left) Through neutron scattering experiments, scientists observed distinct patterns of magnetic correlations in superconducting ("single-stripe magnetism") and nonsuperconducting ("double-stripe magnetism") samples of a compound containing iron (Fe), tellurium (Te), and selenium (Se). (Right) A material phase diagram showing where the superconducting state (SC), nonsuperconducting state (NSC), and topological superconducting state (SC + TSS) appear as a function of Fe and Te concentrations. The starred A refers to the nonsuperconducting sample and the starred B to the superconducting sample. Overlaid on the phase diagram are photoemission spectra showing the emergence (left) and absence (right) of the topological state. Topological superconductivity is an electronic state that could be harnessed for more robust quantum computing.
Credit
Brookhaven National Laboratory
Usage Restrictions
None
License
Licensed content