Caption
An Australian group was the first in the world to confirm the radio emission from a gravitational wave event, discovered by collaborators in the United States being announced today.
A group led by Associate Professor Tara Murphy, from the University of Sydney and the Centre of Excellence for All-sky Astrophysics, has confirmed radio-wave emission from a gravitational wave event discovered on 17 August 2017.
The results are included in a Science paper published today with co-author institutions including the California Institute of Technology (Caltech) and Oxford University; simultaneously teams from the international science community are publishing related research in other leading journals, demonstrating the second epoch in gravitational waves discovery.
Scientists representing LIGO-Virgo, and some 70 observatories today reveal the gravitational waves discovery - the first to produce light and radio waves, not just gravitational waves.
The explosion, produced by a pair of neutron stars merging, took place in galaxy NGC 4993, about 130 million light-years away. The first follow-up detection was optical, about 11 hours after the event, and was detected by a number of groups worldwide. X-ray emissions were detected nine days later and radiowaves after 15 days.
University of Sydney Associate Professor Tara Murphy, who leads the radio astronomy follow-up in Australia, said she was in the United States with colleague David Kaplan when they saw the gravitational wave announcement come through on the private email list of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).
Associate Professor Murphy rang her team in Australia and told them to get onto the CSIRO telescope as soon as possible, then started planning the observations.
"We were lucky in a sense in that it was perfect timing but you have to be at the top of your game to play in this space. It is intense, time-critical science."
PhD candidate Dougal Dobie spent hours observing on the telescope. The team used the CSIRO's Australia Telescope Compact Array to monitor the gravitational wave event for more than 40 hours over several weeks.
The radio glow is expected to continue for some time.