Figure 1. Proposed Energy Diagram Representing the Electron Transfer Mechanism in TiO2/WO3-Ag Hybrid (IMAGE)
Caption
This so-called Z-scheme shows the flow of charged particles (electrons, e- and holes, h+) through the different components of the nanoparticles. Blue TiO2 and WO3's e- can occupy lower (valence band, VB) and higher (conductive band, CB) energy levels. Photons from sunlight (thunders) provide the energy for the e- to jump up from the VB to the CB (black arrows pointing upwards), leaving h+ behind. TiO2's lower band is close, just a bit lower than WO3's higher band level, so e- from the high band of WO3 can migrate to the VB of blue TiO2 to trap its holes. After separation, the excited e- jump from the CB of TiO2 onto silver nanoparticles allowing the conversion of CO2 into CO, while the photogenerated h+ in the WO3 site oxidize water (H2O) to form oxygen (O2).
Credit
IBS
Usage Restrictions
Please indicate the credit.
License
Licensed content