Experimentally Mimicking Earth's Core (IMAGE)
Caption
A team of scientists reports March 30 in the journal Proceedings of the National Academy of Sciences how carbon behaved during Earth's violent formative period. The findings can help scientists understand how much carbon likely exists in the planet's core and the ways it influences chemical and dynamic activities that shape the world, including the convective motion that powers the magnetic field that protects Earth from cosmic radiation. The team's lab experiments compared carbon's compatibility of silicates that comprise the Earth's mantle (outer circle) to its compatibility with the iron that comprises the planet's core (inner circle). The lab experiments were conducted under conditions mimicking the Earth's interior during its formative period. They found that more carbon would have stayed in the mantle than previously thought.
Credit
Rebecca Fischer
Usage Restrictions
News media use of this photo in association with this study is permitted.
License
Licensed content