
Researchers trace geologic origins of Gulf of Mexico 'super basin' success
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
The Gulf of Mexico holds huge untapped offshore oil deposits that could help power the U.S. for decades. According to researchers at The University of Texas at Austin, the basin's vast oil and gas reserves are the result of a remarkable geologic past. Only a fraction of the oil has been extracted and much remains buried beneath ancient salt layers, just recently illuminated by modern seismic imaging.
A new study says that despite a record drop in global carbon emissions in 2020, a pandemic-driven shift to remote work and more at-home entertainment still presents significant environmental impact due to how internet data is stored and transferred around the world.
Tsukuba University scientists show that the effectiveness of hydrogen-producing metal catalysts protected by graphene depends on the ability of protons to penetrate into the inner metallic surface. This work may lead to widely available hydrogen-powered cars.
A new method to analyze chemical status of lithium was developed by using a synchrotron-based scanning transmission soft X-ray microscope (STXM). A key of the method is installation of a newly designed X-ray lens, a low-pass filtering zone plate, to the STXM to improve quality of a monochromatic X-ray. 2-dimensional chemical state of a test electrode of Li-ion battery was successfully analyzed with spatial resolution of 72 nm.
CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation
A proposed hybrid-electric plane could "eliminate aviation's air pollution problem," say MIT engineers. Their design could reduce global nitrogen oxide (NOx) emissions by 95 percent, they report in a study.
There is a growing consensus among scientists as well as national and local governments representing hundreds of millions of people, that humanity faces a climate crisis that demands a crisis response. New research from the University of California San Diego explores one possible mode of response: a massively funded program to deploy direct air capture (DAC) systems that remove CO2 directly from the ambient air and sequester it safely underground.
Cities are responsible for 60-70% of energy-related CO2 emissions. As the world is increasingly urbanized, it is crucial to identify cost-effective pathways to decarbonize. Here, we propose a "SolarEV City" concept, in which integrated systems of cities' roof-top PVs with EVs as batteries can supply affordable and dispatchable CO2-free electricity for citie's dwerllers, which can reduce CO2 emission by 54-95% with 26-41% of potential cost savings by 2030.
Carbon-neutral aviation is possible, but in future, aircraft are likely to continue to be powered by fossil fuels. The CO2 they emit must be systematically stored underground. This is the most economical of various approaches that ETH researchers have compared in detail.
Emergent e-fuel technologies often employ the reverse water-gas shift (RWGS) reaction to convert atmospheric CO2 to CO. While efficient, this reaction requires high temperatures and complex gas separation for high performance. However, for the first time in the world, scientists from Japan have now demonstrated record-high CO2 conversion rates at relatively low temperatures in a modified chemical-looping version of RWGS using a novel copper-indium oxide.