Is your skin thirsty? Optoacoustic sensor measures water content in living tissue
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
Researchers from Skoltech and the University of Texas Medical Branch (US) have shown how optoacoustics can be used for monitoring skin water content, a technique which is promising for medical applications such as tissue trauma management and in cosmetology.
Scientists from Osaka University, The University of Queensland, and the Faculty of Engineering at the National University of Singapore have created polymer-coated nanodiamonds that can be absorbed into cells. Based on changes in their fluorescence properties, the internal thermal conductivity of the cell can be measured, which may lead to new heat treatments that attack cancer cells.
A team of biophysicists set out to tackle the long-standing question about the nature of force generation by myosin, the molecular motor responsible for muscle contraction. The key question they addressed - one of the most controversial topics in the field - was: how does myosin convert chemical energy, in the form of ATP, into mechanical work? The answer revealed new details into how myosin, the engine of muscle and related motor proteins, transduces energy.
A breakthrough that has implications for molecular biology, pharmacology and nanotechnologies. The fields of application are many. Identifying the mechanisms behind neurodegenerative processes in some proteins, for example, can help limit their proliferation. Understanding how a protein takes on a certain shape can open the way to use the nanomachines that nature has designed to cut, edit or block damaged or defective genes. Their study was published in the international academic journal Physical Review Letters
The reproductive cycle of viruses requires self-assembly, maturation of virus particles and, after infection, the release of genetic material into a host cell. New physics-based technologies allow scientists to study the dynamics of this cycle and may eventually lead to new treatments.
Deep in the Brazilian Amazon River basin, scientists discovered a small, river-fed lake filled with more than 100 adult electric eels. Researchers witnessed the electric eels working together to herd small fish into tightly packed balls. Groups of up to 10 eels periodically split off to form cooperative hunting parties. Those smaller groups then surrounded the prey and launched simultaneous electric attacks. The findings overturn the idea that these serpentine fish are exclusively solitary predators.
New probes allow scientists to see four-stranded DNA interacting with molecules inside living human cells, unravelling its role in cellular processes.
In a pair of studies, University of Kansas sport science researchers have found that consuming breakfast can improve basketball shooting performance, significantly in some cases. Another study found that college players' lower body strength and performance can predict professional potential as well.
Cell-spanning whirlpools in the immature egg cells of animals such as mice, zebrafish and fruit flies quickly mix the cells' innards, but scientists didn't know how these flows form. Using mathematical modeling, researchers have found an answer. The gyres result from the collective behavior of rodlike molecular tubes called microtubules that extend inward from the cells' membranes, the researchers report.
Scientists from the Pacific Quantum Center of Far Eastern Federal University (FEFU) figured out how the AFV3-109 protein with slipknot structure folds and unfolds depending on temperature. The protein is typical for the viruses of the oldest single-celled organisms that can survive in the extreme conditions of underwater volcanic sources - archaea. The research outcome appears in PLOS ONE.