
"Magic sand" might help us understand the physics of granular matter
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
Tokyo, Japan - Researchers from Tokyo Metropolitan University have studied the properties of mixtures of silicone-coated "magic sand", a popular kid's toy, and normal sand. Silicone-coated sand particles were found to interact with each other only, and not with other sand particles. The team discovered that adding silicone-coated sand beyond a certain threshold leads to an abrupt change in clustering and rigidity, a simple, useful way to potentially tune the flow of granular materials for industry.
A University at Buffalo-led research team is a 3D printing method called stereolithography and jelly-like materials known as hydrogels to develop a 3D printing method that's 10-50 times faster than the industry standard. The team says its progress toward 3D-printed human tissue and organs -- biotechnology that could eventually save countless lives lost due to the shortage of donor organs.
Mount Sinai Researchers find a new way to prevent attention deficits associated with Fragile X, a leading genetic cause of autism, in an animal model.
Could cactus pear become a major crop like soybeans and corn in the near future, and help provide a biofuel source, as well as a sustainable food and forage crop? According to a recently published study, researchers from the University of Nevada, Reno believe the plant, with its high heat tolerance and low water use, may be able to provide fuel and food in places that previously haven't been able to grow sustainable crops.
A new analysis of collisions conducted at different energies at the Relativistic Heavy Ion Collider (RHIC) shows tantalizing signs of a critical point--a change in the way that quarks and gluons, the building blocks of protons and neutrons, transform from one phase to another. The findings will help physicists map out details of these nuclear phase changes to better understand the evolution of the universe and the conditions in the cores of neutron stars.
Researchers from the International Institute for Carbon-Neutral Energy Research developed a new method for detecting small earthquake tremors and successfully applied it to the Nankai Trough, Japan. The technique allowed the accurate estimation of tremor location and propagation speed, leading to the first estimates of this fault's permeability--crucial information in evaluation of earthquake rupture processes.
Assessments of ecosystem services should take greater account of species diversity, scientists from the German Centre for Integrative Biodiversity Research (iDiv) and the Martin Luther University Halle-Wittenberg (MLU) are calling for. Large-scale assessments, however, only address some of these services, such as water filtration and carbon storage. In contrast, ecosystem services directly linked to species hardly play a role. The researchers point out that this wastes many opportunities for effective nature and species conservation.
Can Switzerland, as planned, cut its CO2 emissions to zero by 2050? In a study, researchers at the Paul Scherrer Institute PSI have investigated what measures would be necessary to achieve this reduction and how much it might cost per person.
Researchers in the UK have developed a way to coax microscopic particles and droplets into precise patterns by harnessing the power of sound in air. The implications for printing, especially in the fields of medicine and electronics, are far-reaching.
An international research team led by chemist Prof. Thomas Heine of TU Dresden has discovered a new two-dimensional material with unprecedented properties: regardless if it is strained or compressed, it always expands. This so-called half-auxetic behavior has not been observed before and is therefore very promising for the design of new applications, especially in nano-sensorics.