
Raman spectroscopy shows promise for diagnosing oral cancer
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
In a new study, researchers show that a light-based analytical technique known as Raman spectroscopy could aid in early detection of oral squamous cell carcinoma (OSCC).
Analysis of the first super slow motion recordings of upward flashes suggests a possible explanation for the formation of luminous structures after electrical discharges split in the atmosphere.
Optical sensing which captures fingerprint information of chemical or biological substances with light, plays a crucial role in many areas including environmental sensing, medical diagnostics and homeland security. Scientists from University at Buffalo demonstrated an optical sensor design which utilizes nano-scale trenches to passively concentrate and trap trace analytes in a solution, leading to the capability of detecting picogram level biomolecules such as glucose and amino acids. The devices also achieved effective trapping of nano-particles.
Columbia Engineering researchers report the first nanomaterial that demonstrates "photon avalanching," a process that is unrivaled in its combination of extreme nonlinear optical behavior and efficiency. The realization of photon avalanching in nanoparticle form opens up a host of sought-after applications, from real-time super-resolution optical microscopy, precise temperature and environmental sensing, and infrared light detection, to optical analog-to-digital conversion and quantum sensing.
Researchers have developed a new laser-based process for 3D printing intricate parts made of glass. With further development, the new method could be useful for making complex optics for vision, imaging, illumination or laser-based applications.
High efficiency solar cells and light-emitting devices are end-goal targets towards a more sustainable world. Nanostructures possess distinct advantages due to their exceptional optical and electronic properties under the influence of light. Yet, their wide-spread application in real-world devices is limited by their poor transport properties. Scientists discovered that nanocrystals made with halide perovskites, a recently discovered revolutionary semiconductor, can lead to long-range energy transfer, opening new avenues for future devices implementing disruptive nanotechnologies.
Researchers from Osaka University propose a concept for next-generation ultra-intense lasers, possibly increasing the current record from 10 Petawatts to 500 Petawatts.
An international team of researchers, including Professor Roberto Morandotti of the Institut national de la recherche scientifique (INRS), just introduced a new photonic processor that could revolutionize artificial intelligence, as reported by the prestigious journal Nature.
In The Optical Society (OSA) journal Optics Express, the researchers demonstrate that 3D optical imaging can be performed with a cell phone and LEDs without requiring any complex manual processes to synchronize the camera with the lighting.
A University of Washington-led team has come up with a system that could help speed up AI performance and find ways to reduce its energy consumption: an optical computing core prototype that uses phase-change material.