
NASA explores solar wind with new view of small sun structures
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
Scientists have combined NASA data and cutting-edge image processing to gain new insight into the solar structures that create the Sun's flow of high-speed solar wind, detailed in new research published today in The Astrophysical Journal. This first look at relatively small features, dubbed "plumelets," could help scientists understand how and why disturbances form in the solar wind.
New research on predicting the earth's future climate: Using gravitational-wave science, a group of international scientists, including Australian OzGrav astrophysicist Ilya Mandel, studied ancient marine fossils as a predictor of climate change.
Aside from regular ice, water can exist in the form of peculiar solids called clathrate hydrates, which trap small gaseous molecules. They play a large role in the evolution of atmospheres, but predicting their presence in cryogenic temperatures is difficult. In a recent study, scientists from Okayama University developed statistical mechanics theory to determine their presence in Pluto and some of Jupiter's and Saturn's satellites, providing valuable information to revise existing interpretations.
Two giant radio galaxies have been discovered with South Africa's powerful MeerKAT telescope. These galaxies are thought to be amongst the largest single objects in the Universe. The discovery has been published today in Monthly Notices of the Royal Astronomical Society.
A Canadian-led team of astronomers discovers that the core mass of exoplanet WASP-107b is much lower than previously thought possible for a gas-giant planet.
Nearly every galaxy hosts a monster at its center -- a supermassive black hole millions to billions times the size of the Sun. Some of these black holes are particularly active, whipping up stars, dust and gas into glowing accretion disks emitting powerful radiation into the cosmos as they consume matter around them. These quasars are some of the most distant objects that astronomers can see, and there is now a new record for the farthest one ever observed.
The NASA/ESA Hubble Space Telescope has observed the supernova remnant named 1E 0102.2-7219. Researchers are using Hubble's imagery of the remnant object to wind back the clock on the expanding remains of this exploded star in the hope of understanding the supernova event that caused it 1700 years ago.
A new study, led by a theoretical physicist at Berkeley Lab, suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.
Astronomers have catalogued 126 years of changes to HS Hydra, a rare evolving eclipsing binary star system. Analyzing observations from astro-photographic plates in the late 1800s to TESS observations in 2019, they show that the two stars in HS Hydrae began to eclipse each other around a century ago, peaking in the 1960s. The degree of eclipsing then plummeted over the course of just a half century, and will cease around February 2021.
Astronomers are winding back the clock on the expanding remains of a nearby, exploded star. By using NASA's Hubble Space Telescope, they retraced the speedy shrapnel from the blast to calculate a more accurate estimate of the location and time of the stellar detonation.