News Release

Ancient fresh water lake on Mars could have sustained life

Scientists have found evidence that there was once an ancient lake on Mars that may have been able to support life

Peer-Reviewed Publication

Imperial College London

Scientists have found evidence that there was once an ancient lake on Mars that may have been able to support life, in research published today in the journal Science.

A team of researchers from NASA's Mars Science Laboratory (MSL) Curiosity rover mission, which includes a researcher from Imperial College London, have analysed a set of sedimentary rock outcrops at a site named Yellowknife Bay in Gale Crater, near the Martian equator. These mudstones have revealed that Gale Crater, a 150 km wide impact basin with a mountain at its centre, sustained at least one lake around 3.6 billion years ago.

The scientists believe that the lake may have lasted for tens if not hundreds of thousands of years.

The team's analysis showed that the lake was calm and likely had fresh water, containing key biological elements such as carbon, hydrogen, oxygen, nitrogen and sulphur. Such a lake would provide perfect conditions for simple microbial life such as chemolithoautotrophs to thrive in.

On Earth, chemolithoautotrophs are commonly found in caves and around hydrothermal vents. The microbes break down rocks and minerals for energy.

Mudstones generally form in calm conditions. They are created by very fine sediment grains settling layer-by-layer on each other, in still water.

Professor Sanjeev Gupta, a member of the MSL mission from the Department of Earth Science and Engineering at Imperial College London and a co-author on the papers, says: "It is important to note that we have not found signs of ancient life on Mars. What we have found is that Gale Crater was able to sustain a lake on its surface at least once in its ancient past that may have been favourable for microbial life, billions of years ago. This is a huge positive step for the exploration of Mars.

"It is exciting to think that billions of years ago, ancient microbial life may have existed in the lake's calm waters, converting a rich array of elements into energy. The next phase of the mission, where we will be exploring more rocky outcrops on the crater's surface, could hold the key whether life did exist on the red planet."

In previous studies, Professor Gupta and the MSL team have found evidence of water on Mars' surface in other rocks such as conglomerates. However, the new research provides the strongest evidence yet that Mars could have been habitable enough for life to take hold.

The team analysed the geology and chemistry of the mudstones by drilling into the rock using the MSL six-wheeled science laboratory, which is remotely operated by the MSL team from the Jet Propulsion Laboratory in Pasadena in the USA.

The next step will see the team using the rover to explore Gale Crater for further evidence of ancient lakes or other habitable environments in the thick pile of sedimentary rocks scattered across the crater's surface.

###

Professor Sanjeev Gupta is available for comment from Wednesday 4 November to Friday 6 November 2013. For more interview details or to find out how you can download the papers from the journal Science see details below.

Interview details

Professor Sanjeev Gupta is available for interviews from 4-6 November before flying out to the American Geophysical Union Annual Meeting, where a news conference about the findings will take place. To arrange an interview, contact Colin Smith (details below).

Copies of the embargoed Science paper are available from the AAAS Office of Public Programs for journalists. Journalists can contact +1-202-326-6440 or email scipak@aaas.org.

Contact:

Colin Smith
Senior Research Media Officer - Faculty of Engineering
Tel: +44 (0)20 7594 6712
Duty press officer mobile: +44 (0)7803 886248
Email: cd.smith@imperial.ac.uk

Notes to editors

1. Science

Copies of the embargoed Science paper are available from the AAAS Office of Public Programs for journalists. Journalists can contact +1-202-326-6440 or email scipak@aaas.org. Others seeking copies of the paper may order them from http://www.sciencemag.org, after the embargo has lifted.

"A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars", Science, 9 December 2013 by J.P. Grotzinger and colleagues

"Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars," Science, 9 December 2013, by S.M. McLennan and colleagues

"Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars" Science, 9 December 2013, by D.W Ming and colleagues

"Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars" Science, 9 December 2013, by D.T Vaniman and colleagues

"In-situ radiometric and exposure age dating of the Martian surface", Science, 9 December 2013, by K. Farley and colleagues

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture. Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.