[ Back to EurekAlert! ] Public release date: 7-Dec-2010
[ | E-mail Share Share ]

Contact: Jason Socrates Bardi
American Institute of Physics

Tiny laser light show illuminates quantum computing

This release is also available in Chinese on EurekAlert! Chinese.

VIDEO: This movie shows laser beams being directed to a 5x5 array. The current paper uses only a 1x5 array, but with real atoms and quantum measurements of the internal rotations.

Click here for more information.

Washington, D.C. (December 7, 2010) -- A new laser-beam steering system that aims and focuses bursts of light onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison.

Described in the journal Applied Physics Letters, published by the American Institute of Physics, the new system is somewhat like the laser-light-show projectors used at rock concerts and planetariums. But it's much smaller, faster, atom-scale accurate and aimed at the future of computing, not entertainment.

In theory, quantum computers will be able to solve very complex and important problems if their basic elements, called qubits, remain in a special "quantum entangled" state for a long enough time for the calculations to be carried out before information is lost to natural fluctuations. One of several promising approaches to quantum computing uses arrays of individual atoms suspended by electromagnetic forces. Pulses of laser light manipulate the internal states of the atoms that represent the qubits, to carry out the calculation. However the lasers must also be focused and aimed so accurately that light meant for one atom doesn't affect its neighbors.

The new system did just that. Tiny micromirrors, each only twice the diameter of a human hair, pointed to each target atom in as little as 5 microseconds, which is about 1,000 times faster than sophisticated beam-steering mirrors developed for optical communications switching, not to mention the still slower units used in light shows. The researchers saw that the laser pulses also correctly manipulated the quantum properties of each target atom in this case a line of five rubidium-87 atoms -- without disturbing any neighboring atoms, which were separated by just 8.7 microns, about one-tenth the diameter of a human hair.

"Our experiments demonstrated the crucial requirement that our micromirror system maintain the laser-beam quality necessary to manipulate the internal states of the individual atoms," said Jungsang Kim, leader of the Duke researchers who designed the micromirror system. The atomic physics experiments were performed in Mark Saffman's group at University of Wisconsin-Madison.

The groups plan to continue their collaboration, with future experiments targeting two-qubit gates, which are expected to be the basic building block of quantum logic, and atoms confined in larger two-dimensional arrays.


The article, "Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system" by Caleb Knoernschild, Xianli Zhang, Larry Isenhower, Alex T. Gill, Felix P. Lu, Mark Saffman, and Jungsang Kim appears in the journal Applied Physics Letters. See: http://link.aip.org/link/applab/v97/i13/p134101/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

This work was funded by the Army Research Office, the Intelligence Advanced Research Projects Activity (IARPA), and the National Science Foundation.

NOTE: A video is available for journalists. Please contact jbardi@aip.org

VIDEO DESCRIPTION: Movie file shows laser beams being directed to a 5x5 array. The current paper uses only a 1x5 array, but with real atoms and quantum measurements of the internal rotations.


Applied Physics Letters, published by the American Institute of Physics, features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, Applied Physics Letters offers prompt publication of new experimental and theoretical papers bearing on applications of physics phenomena to all branches of science, engineering, and modern technology. Content is published online daily, collected into weekly online and printed issues (52 issues per year). See: http://apl.aip.org/


The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

[ Back to EurekAlert! ] [ | E-mail Share Share ]


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.