News Release

Humans not the major target of Shiga toxin

They're simply caught in crossfire

Peer-Reviewed Publication

American Society for Cell Biology

Washington, D.C. -- If you’ve survived Shiga toxin and the after-effects of food poisoning, you may have been the innocent victim of a battle for survival between predator and prey.

Bacteria that carry a virus (a bacteriophage) that packs the Shiga toxin gene (Stx) may depend on it for protection from bacterial predators like the ciliated protozoan Tetrahymena. This is small comfort if you’ve just consumed that

Food poisoning victims -- as a result, for example, of consuming Shiga-packing E.coli in a contaminated bag of spinach -- have always had the cold comfort of being told that not all common bacteria make humans extremely sick, only the strains that have integrated the Shiga gene into their DNA. These bacteria can produce large amounts of the Shiga toxin and release it into the surrounding environment.

Leaving sick humans aside for a moment, Gerald Koudelka, Todd Hennessey, and colleagues from the University at Buffalo in Amherst, New York, wondered what evolutionary advantage the bacteria would derive from carrying around such a prickly viral hitchhiker. They hypothesized that the Stx gene might give the bacterial host an equalizer against bacterial predators.

“Humans may not be the major target of this toxin,” explains Koudelka. “Instead, they might be simply caught in the cross-fire in this ancient battle between prey and predators.”

To test their hypothesis, the researchers grew Tetrahymena with an E. coli strain (EDL933) that carries the Stx gene. It worked, at least, for the EDL933 that grew successfully in co-cultures with Tetrahymena. In this hostile environment, it was the predator, Tetrahymena, that was killed by the bacteria’s Shiga toxin. An E. coli strain (W3110) lacking Stx did poorly with Tetrahymena as roommates. The Tetrahymena had them for lunch.

The Shiga toxin kills by binding to a receptor on the surface of Tetrahymena. Adding protein subunits that block toxin binding to the protozoan predator prevented killing by Shiga toxin. Humans have the same surface receptor for Shiga toxin as do Tetrahymena, which gives biologists and produce packers a close interest in the deadly duel between Tetrahymena and Shiga-packing E. coli.

The Koudelka and Hennessey labs are continuing to characterize the route of Shiga toxin entry into the cytoplasm of Tetrahymena, its mode of killing, and the ability of Tetrahymena to develop resistance to Shiga toxin. The protozoan might make a model cellular system for Shiga detoxification, which one day might relieve some of the stress around the salad bar, say Koudelka and Hennessey.

###

Paper titled, Shiga Toxin Toxicity and Resistance in Tetrahymena, will be presented at 12 noon to 1:30 p.m., Monday, Dec. 3.

For more information:
Todd M. Hennessey
University of Buffalo
thennes@buffalo.edu
(716) 645-2363 x194

ASCB meeting press office:
John Fleischman, ASCB science writer:
jfleischman@ascb.org or (513) 929-4635 or

Cathy Yarbrough, ASCB meeting information officer:
cyarbrough@ascb.org or (858) 243-1814


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.