A paper detailing the development was published in Circulation Research (October 2002).
"Everyone imagines the possibilities of embryonic stem cells in repairing broken hearts, but stem cell technology offers even more -- and it offers it much earlier," said Dr. Lior Gepstein of the Technion Faculty of Medicine who headed the study. "Currently, we test drugs on animals, but we would get more reliable results if we tested them on the actual human tissues."
He added that a variety of tissue types, from neurons to pancreas, could be generated through the same methods.
Even after extensive testing on humans, drugs are often found to have unexpected side effects, sometimes on an unrelated organ or tissue. Having human organs and tissues available in the lab could preclude these "surprises," according to Dr. Gepstein.
By observing the electrical signals in heart tissue researchers could also study the effect of various drugs and growth factors as well as different stresses. Moreover, this tissue can also be used to study which genes are activated as the heart develops, examine the impact of genetic mutations, and develop new drugs based on these observations. Finally, the ability to generate human tissue outside the body may advance the rapidly developing field of tissue engineering which attempts to combine functional cells with three-dimensional scaffolds to create tissue substitutes.